US009134720B2

a2 United States Patent

Shah et al.

US 9,134,720 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MACRO FUNCTION BLOCK FOR
ENCAPSULATING DEVICE-LEVEL
EMBEDDED LOGIC

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2011/0202688 Al

Harsh Shah, Cleveland, OH (US);
Gregory A. Majcher, Broadview
Heights, OH (US); Jian Feng, Shanghai
(CN); Qing Jia, Shanghai (CN); Tao
Song, Shanghai (CN); Zhen Wei,
Shanghai (CN); James Edward Joe,
Waukesha, WI (US)

ROCKWELL AUTOMATION
TECHNOLOGIES, INC., Mayfield
Heights, OH (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 159 days.

12/895,392

Sep. 30, 2010

Prior Publication Data

Aug. 18, 2011

Related U.S. Application Data
Provisional application No. 61/304,227, filed on Feb.

12, 2010,

provisional application No. 61/304,261,

filed on Feb. 12, 2010, provisional application No.
61/304,275, filed on Feb. 12, 2010.

Int. Cl1.

GO6F 3/00 (2006.01)

GO5B 19/045 (2006.01)

GO5B 19/042 (2006.01)

GO5B 19/05 (2006.01)

U.S. CL

CPC ... GO5B 19/045 (2013.01); GOSB 19/0426

(2013.01); GO5B 19/056 (2013.01); GOSB

2219/23258 (2013.01); GO5SB 2219/23274
(2013.01); GO5B 2219/25232 (2013.01)
(58) Field of Classification Search
USPC 715/704
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,302,820 A * 11/1981 Strugeretal. 712/248
5,030,939 A 7/1991 Lovick
5,168,441 A * 12/1992 Onarheimetal. 700/17
5,524,083 A 6/1996 Horne et al.
5,717,588 A 2/1998 Yamane et al.
5,971,581 A 10/1999 Gretta et al.
6,018,335 A * 12000 Onleyetal. ..o 345/172
6,061,603 A 5/2000 Papadopoulos et al.
6,459,557 B1 10/2002 Haensgen et al.
6,466,827 B1 10/2002 Stine
6,816,817 B1 11/2004 Retlich et al.
6,819,960 B1 11/2004 McKelvey et al.
6,832,118 Bl 12/2004 Heberlein et al.
6,901,316 Bl 5/2005 Jensen et al.
(Continued)
FOREIGN PATENT DOCUMENTS
GB 2456037 A 7/2009
WO 9836335 A2 8/1998

Primary Examiner — Elias Mamo
(74) Attorney, Agent, or Firm — Fletcher Yoder P.C.

(57) ABSTRACT

The present invention provides techniques for encapsulating
device-level embedded logic into user-defined instructions
using configuration software. More specifically, the disclosed
embodiments enable add-on instructions for device configu-
ration embedded logic. Programming interfaces specific to an
application or device may be combined into a single instruc-
tion as a reusable Macro component that may be reused in the
same or different applications or devices.

21 Claims, 27 Drawing Sheets

[m] 3=
[FTCE EDIT_VIEW COMMUNICATIONS TOOLS HELP 64
52 mGIDIeals [([S]a][BAND BXOR RISETD [RSTD][]
B0) _MOVE /LOGICAL
A | C p) E
68 1 66 i
1 b [B0 Sh7g
BOOLEAN AND ‘.é
[P O ===~ %Inl out]
______ . TONR E3[74
I R 2 ooyt)]
---------- ATimerEngble DN %y--------- 1]
--------- %Reset i
72 h) i
2| [@EEITe 70 |
B < [WOR
[RETWORK TRPUT Q-
(1 I JL:
FOR HELP, PRESS F1 [AVAILABLE FUNCTION BLOCKS: 7OJNOT SAVEDL (513, Z40)[100%)

US 9,134,720 B2

Page 2
(56) References Cited 2003/0160782 Al* 82003 Kawaietal. 345/419
2004/0221262 Al* 11/2004 Hampapuramet al. 717/113
U.S. PATENT DOCUMENTS 2004/0229657 Al* 11/2004 Nakanishi ... 455/566
2004/0243654 Al* 12/2004 Burretal. ... 708/164
6,978,225 B2 12/2005 Retlich et al. 2004/0260412 A1 12/2004 Yasui et al.
6,999,824 B2 2/2006 Glanzer et al. 2006/0206218 Al 9/2006 Glanzer et al.
’ ’ : ' 2008/0004727 Al 1/2008 Glanzer et al.
7,092,771 B2 8/2006 Retlich et al 2008/0228289 A1* 9/2008 Hwang et al. ..occcoorrrrenn, 700/3
7,130,704 B2 10/2006 McKelvey et al. .
2008/0288618 Al 11/2008 Vardi et al.
7,272,457 B2 9/2007 Glanzer et al. 5008/0294986 Al* 11/2008 S
eoetal. ..oooviviieiine 715/704
7424329 B2 9/2008 McKelvey et al. 2010/0131081 Al 52010 Brown etal.
7,486,999 B2 2/2009 Glanzer et al.
8,898,633 B2 11/2014 Bryant et al. * cited by examiner

U.S. Patent Sep. 15, 2015 Sheet 1 of 27 US 9,134,720 B2

AMI 14 /-10
CONTROLLERN_1 ¢
1111111
30—/ 28
\
2030 | 2030 f 2030 15530 } o |30 30 118
:lIIIIIIIKIIIIIIIklllllll |||||||[|||||||-kllllllli
N ACT ACT ACT 170 170 70|
:||||||| /NN 1111111 1111111 1111111 | HEEEEEN}
f-g------1 f--=--§-- {f--4----- f----1--- e s :
30 30 26~Y, 30 30 30 2 30 26
I MACHINE /PROCESS |
(
12
14

CONTROLLER

U.S. Patent Sep. 15, 2015 Sheet 2 of 27 US 9,134,720 B2

12 32 38 40
3 : ! .
B] [FUNCTIONAL
> INTERFACE J=~ PROCiESSORI<—>I INTERFACE =t~ o1ciTRy
[MEMORY h_ s, -
LOW-LEVEL
DISTRIBUTED RUN-TIME 1 —
DRVICE LIBRARY [~—36
a4
62 58
L \ "
CONFIGURATION
[DESIGNER |—={ INPUT | 46 STATION \
BA—~ TOW-LEVEL
& | A INTERFACE }<~>{ PROCESSOR }<-~{_INTERFACE J=<{~{ DISTRIBUTED
t 48 DEVICE
CONFIGURATION
60_/{ DISPLAY | MEMORY |=— SOFTWARE. [NF50
DESIGN-TIVE
64— BROWSER LBRARY [N—52

FIG. 4

US 9,134,720 B2

Sheet 3 of 27

Sep. 15, 2015

U.S. Patent

1%00T][(6vy "€10)I| JI03AVS 1ONJI0Z 'S¥20179 NOILONNS FT1IVTIVAV] T4 SS3¥d 'd13H H0
| [[I
i i m s omne im0 el I
S | | |
| m o/ | . -\ |2
| | U | m
i : 1Y) 4 S P m
o+ --------- ._.wmzo B0BUIOWI] [- - - - - =~~~ - “
............... _; S A B N
1 m = ool o TuRY----- BRS CUELY|
m m /\\ Moz«. NY31004 2/ m
! ! ViiE anve ! I
_ | ! 99 ! -89 |
d J d Y
/ WJI90T/ JAON HILNNOD/ HIWIL\ +0%87 2
\\ _M_ @15y [aL3S JYONXE] YONS JONYNE] LONg J ¥oxd [¥09 [aNVd ___U_n___m_ ViowldlBoa % |F)
¥9 d1dH S7001 SNOLLYOINNNINGD MAIA 1Id3 F114
=] O

U.S. Patent Sep. 15, 2015 Sheet 4 of 27 US 9,134,720 B2
7\8 &0 %2 88 90
1oo 1oo
sa() (~ j 92
\ COMPARE b--
-f_ T BOOLEAN BOOLEAN
FUNCTION LIJ
A ARITHMETICHH " g/ ocK /) ARITHMETICH COMPARE
S\)Y
8 o1 76 96 98°% 102 104
FIG. 6 1°°
106
POWER UP AND r
NO CONFIGURATION
! NON-EXISTENT |—108
DELETE SERVICE CREATE SERVICE
POWER UP AND 10
SAVED CONFIGURATION _ -
CONFIGURING e RvICE
ERROR MESSAGE APPLY MESSAGE
reapy U2
RUN MESSAGE
STOP 114
MESSAGE ACTIVE GET /SET
(LOGIC ENABLED) SERVICE

FIG. 7

U.S. Patent Sep. 15, 2015 Sheet 5 of 27 US 9,134,720 B2
116 —~\
FVENT NON-EXISTENT CONFIGURING READY ACTIVE
POWER 1055 |NOT APPLICABLE [TRANSITION 10 TRANSITION 10 TRANSITION 10
NONZEXISTENT NON=EXISTENT NON-EXISTENT
POWER UP AND [TRANSITION TO [NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE
SAVED CONFIGURING
CONFIGURATION
CREATE SERVICE [IF LOGIC IS ENABLED, [RETURN "0BJECT ALREADY RETURN "OBJECT | RETURN "OBJECT
RETURN THE ERROR' | EXISTS” ERROR RESPONSE. ALREADY EXSTS” ALREADY EXSTS"
RESPONSE "DEVICE FRROR RESPONSE. [ERROR RESPONSE,
STATE CONFLICT"
OTHERWISE. CLASS
INSTANTIATES AN
ORIECT INSTANCE:
TRANSITION T0
CONFIGURING.
BT /ST RETURN "OBJECT [VALIDATE /PROCESS REQUEST | VALIDATE /PROCESS [VALIDATE /PROCESS
SFRVICE DOES NOT BXST” REQUEST REQUEST
ERROR RESPONSE. | i
APPLY NOT APPLICEBLE __[VALIDATE. THE. CURRENT NOT APPLICABLE NOT APPLICABLE
MESSAGE* CONFIGURATION: SEND SUCCESS
OR ERROR RESPONSE TO' LOGIC
SUPERVISOR OBJECT, AND IF
SUCCESS, TRANSITION
T0 READY. ERROR RESPONSES
SHOULD RETURN ERROR CODE
OdF AND THE ADDITIONAL
FRROR CODE THAT DESCRIBES
THE REASON FOR FAILURE. THE
ADDITIONAL ERROR CODES ARE
DEFINED N THE L0GIC
SUPERVISOR OBJECT (0X30E).
ERROR MESSAGE* [NOT APPLICABLE | NOT APPLICABLE CONFIGURATION 1S NOT | NOT APPLICABLE
CORRECT. TRANSITION T0
CONFIGURING STATE.
RUN VESSAGE® [NOT APPLCABLE | NOT APPLICABLE CONFIGURATION FS_[NOT APPLICABLE
PASSED VALIDATION.
TRANSITION TO' ACTIVE,
STOP MESSAGE | NOT APPLIGABLE | NOT APPLICABLE NOT APPLICABLE LOGIC FRS BEEN
DISABLED, TRANSITION
T0 CONFIGURING STATE,
DELETE SERVICE [RETURN OBJECT | RETURN ALL INSTANCE RETURN "DEVICE STATE. |RETURN "DEVICE
DOES NOT BXIST" [ATTRIBUTES 70 DEFAULTS, [CONFLICT" ERROR | STATE CONFLLCT”
ERROR RESPONSE. | UPDATE "INSTANCE LIST" AND | RESPONSE. FRROR RESPONSE,
TRANSITION TO' NON-EXISTENT,
STHE LOGIC SUPERVISOR OBJECT (0x30E) SENDS THE APPLY MESSAGE TO ALL CURRENTLY CREATED FUNCTION BLOCK
INSTANCES, EACH INSTANCE WUST VALIDATE THAT ALL REQUIRED INPUTS ARE BOUND TO EXSTING ENTITIES.
IF ANY ONE INSTANCE ENCOUNTERS A PROBLEM WITH ITS CONFIGURATION, ALL LOGIC COMPONENTS WILL RECEIVE AN ERROR
MESSAGE FROM THE LOGIC SUPERVISOR FORCING A TRANSITION BACK TO THE CONFIGURING STATE.

FIG. 8

U.S. Patent Sep. 15, 2015 Sheet 6 of 27 US 9,134,720 B2

198 64
CIJFUNCTION BLOCK EDITOR: 0 — [LOGICl]/ \ B
FILE_EDIT VIEW_COMMUNCATIONS TO0LS_HELP [

D) w0ololalafal|o|alo|o M%WMQCRO *| 120

§¢000 [oI\ COMPARENCOMPUTE/HATEVOVE /LOGCAL HACROBLOCK,/ <—”
A | b | C |

PASTE CTRL+V

12
DD EENENT.. AT+ 6

SELECT ALL p \
ADD COMMENT LIST OF ELEMENTS

FIG. 10 WAV
Z ANLOG U] [A]

~- ANALOG QUTPUT
— PROCESS

~ FILTER |
— SELECT /LIMIT

- STATISTICAL

~ TIMER /COUNTER
— COMPARISON

~ MATHEMATIC

~ MOVE /LOGICAL
-M

ACROBLOCK
76T~ —"_jcRo | V]

FIG. 11

128

N

130—

-6 -8 0 -

[;

U.S. Patent Sep. 15, 2015 Sheet 7 of 27 US 9,134,720 B2

132~ 6
3 FUNCTION BLOCK EDITOR)
[FILEYEDITIVIEWCOMHUNCATIONS_T00LS_ELP _.
INDO m olalolo
G20 RN R MmO A FR
Cur (R] =
0PY (RS | -
PASTE (LY |
DELEE DL i
126 {1 0D ELENENT.. ALT=INS |
SHLECTALL CRL:A !
1|[_PROPERTIES.. ALT-ENTER |
RECOVERY MODE.. !
I |
FIG. 12
136
' 198 e 64
O FUNCTION BLOCK \EDITOR: 0 - [LOGICLI / \ .
FILE_EDIT VIEW_COWMUNCATIONS]" T00LS | HELP -
TR N | IR I i | 120
§ eO00 | CONPARE CONPUTE/MATHONOVE/I0GIAL, MACROBLOCK / <—”
A v CTRL4E | c U T
RESOURCE... : \
% [VACRO BLOCK »J[CRENTE WACRO BLOCK W\ 118
138 MACRO BLOCK MANAGER

OPEN MACRO BLocK oeFmmon | 134 !
DELETE MACRO BLOCK |

OPEN MACRO BLOCK WINDOW

FIG. 13

US 9,134,720 B2

Sheet 8 of 27

Sep. 15, 2015

U.S. Patent

ANRIE

[1[a3AvS LON]B¥ *S¥2018 NOILONNd I1gVIIVAY

14 SS3¥d 'd13H ¥od4

991

OPT+

¢cl

|

X

Nw J

OYOVIN XQ1D0T NIVIA\ie] a[b [

v.”

I»

|

\

oﬁl*w:

—/0079 OHOVINX_1¥JID01/ JAOW XHIVIN/ 31NdN0J X\ I¥VdNOD

[

¢
4o

d13H

wolablallTevames ¢ g
T00L SNOILYOINNWNOD MIIALId3 114

tORF

XEE

[121907] — 0 *¥OLId3 2018 NOILINN4[]

8ol

U.S. Patent Sep. 15, 2015 Sheet 9 of 27 US 9,134,720 B2

142
148 150)
144 MACRO BLOCK DEFINITION DIALOG])
e N Z pd
GE@ [NPUT / OUTPUT[PARAMETER[SECURITY]
146 NAME: [MACRO 3 T 1%
DESCRIPTION:
;154
[LoGIC] ok, J[cAnceL][HELP]| F|G. 15
I
158 156
142
146 148 150)
MACRO BLOCK\DEFINITION DiALOG |
144~
NGENERALTINPUT /OUTPUTlPARAMETER!SECURITY! —1—162
[TNAME USAGE_IDATA TYPE h1 164
160—+{LJENABLE TN NPUT _ BOOLEAN
ENABLE_OUT OUTPUT __BOOLEAN
[INPUT T INPUT__[=]BOOLEAN [=
[INPUT 2 INPUT _|=]ANALOG [~
*[OUTPUT 1 OUTPUT [=[BOOLEAN [=
;[OUTPUT 2 OUTPUT [=]ANALOG [~
[Loaic] ok J[cancet][HELP]| FIG. 16
I

158 156

U.S. Patent Sep. 15, 2015 Sheet 10 of 27 US 9,134,720 B2

142
14{6 1A|,8 1?0)
MACRO BLOCK\DEFINITION DIALOG |)

AN Z Z
GENERALJINPUT / OUTPUT|PARAMETER| SECURITY|

NAME SETTABLE[DATA TYPE|DEFAULT
EnablelnConstantValue |1 BOOLEAN |1

144 —

Z

, LOGIC OK . JLCANCEL || HELP

A}

1
158 156

FIG. 17

US 9,134,720 B2

Sheet 11 of 27

Sep. 15, 2015

U.S. Patent

[][a3AvS 1ONJ[8¥ ‘S¥2078 NOILONNI F1gVIIVAY

8T Ol

O¥1-

|

991 44!
891
S\ J I
4S010 T OMDOYINXDDOT NIVIW\Je] a]v bl
dl 1 1 1] _ 0 [
s - | | i
hd IV |]]
7 | @) v
e Y018 OHOVA X_IVIID01/ JAON_XHLI B +0%T 2
021 0 RERE CIEGIECEAL
d13H[/S100L SNOILVOINNWINOD MIIA LId3 114
B[] [T0ID07] - 0 =¥0LId3 %2078 NOILONNA[]

US 9,134,720 B2

Sheet 12 of 27

Sep. 15, 2015

U.S. Patent

| [03AVS_LONJOF *S¥O0T8_NOILONNI F18VIIVAV 14 SS3¥d ‘d13H ¥OA
991 - [
\ J X
/¢ QHOYINXOIDO0T NIVIN \Jie] a]p Tmi
q _ _ _ 1 [
m m N:L\/ 5m<zm§>_<wuL_ Z
" " 1no NI
" ! 1N0T1EYNT NIFTEYNI
m m I9Y43IAY ONIAOW
....... [| B 3JAYW
S “ JZIVILINIE
orl—" | 10 NI _ I
m m 11N0T18VNT NITTEYNZ P m !
! ! 31714 SSvd MOT| ! r-g
g | — =4 |
L4 1 A !
g]
\/ ILNdNOD X IHYdINOD] ¢] »)

el B E R E L ERE GG
dT13H_S100L SNOLLVIINNWNOD MIIA_LIG3 3114
(1019071 - 0 °40LId3 %2018 _NOILONNI]

US 9,134,720 B2

Sheet 13 of 27

Sep. 15, 2015

U.S. Patent

[1[@3AvS IONJRY 'S¥001d NOILONN FIEVIIVAY
991
a
| | 2L TI8YNITIINYS p-tmm -~ :
" ! ! 1no NI
m | | lnoTiewNd NITIgNEE
! ! QIR JOVYIAY ONIAOW ,
| i L B AW
| m 99
....... e L LT]
| ! [T - ---+---- dLN0 NI
" “ ! =~ 1n0TIgWNI NITIEYND
| “ ! ¥3LTIS S5V MO
vV | MOGNIM %0018 0dovIN_N3dO bi1— 41 .
| Y2019 04OV 313130 i “
VI~ NOILINZId %0078 _O4OVN_N3dO | !
| UIDYNVIN %0018 OHIVI ! !
gez++" Wo0l8 ONOVW 3lvaud [¥oo18 0govm 1 Sel !
> _ “ "304N0S3Y _
d J [T+ 010 1ar v
o 8I1—/%0018 ONOVIN X_1voID01/ 3A Va0 Va0 X[<[> ~O0®7 3
[AIg3A 0001 _plalplall Tievlaeiw * g
\ d13H [STOOL | SNOILVOINNWANOD M3IA_L1id3 311

yo |XIEIE

9e71— [1J1907] - 0:¥0LI03 %2018 NOLLONN4O]

I¢ Ol

|[d3AVS LONJ{OF 'SM¥O0T8 NOILINN] FT8VIIVAY]

¢¢l— T4 SS3¥d ‘'d13H ¥04

99

US 9,134,720 B2

¢ll

F1YNINdNYSp------~- . 4
1no NI
qLN0F1GYNT NIETGYNI E

Aldd¥

JOVYHIAY ONIAOW

Sheet 14 of 27

ENERE[C
NOLLINIJ3Q %9078 OYIYA' N3dO

B JAVIA

INFWAOD aayv

11V 133135
TAININTT3 ddv

31Svd

ZIYILINIP--

Sep. 15, 2015

(IO~ 31714 SsYd MOT| L - - TN

q1no NI
- 1n0T1aNT NiTevk3

|9

01— 4d1 "

— /Y0078 OHOVINX_1VJI901/ JAON NH.LWV

d v

N/ 3LNdN0J \JuvdNOD Y 4] » 027

86l @il [D]o[D]al Feo v @B = * g

d13H S1001 SNOLLYJINNANOI MAIIA LIdd 3714

[101907] - 0 '¥0LIdd 30178 NOILONNA[]

U.S. Patent

U.S. Patent

Sep. 15, 2015

17|8

Sheet 15 of 27

US 9,134,720 B2

176

LPF PROPERTIES)
4

GENERAL|{PARAMETERS

—BLOCK PARAMETERS
NAME VALUE TYPE
Enableln 0/BOOLEAN
In 0.000000{REAL
Initialize 0|BOOLEAN
EnablelnConstan 1|BOOLEAN
InitializeConstant 0|BOOLEAN
Wiag 1.000000{REAL
Order 1JUSINT
FaultOption OJUSINT
FaultStateValue 0.000000{REAL
FaultCode OJUSINT
EnableQut 0|BOOLEAN
Qut 0.000000{REAL

EDIT MACRO BLOCK PARAMETERS?N

VA

—180

0K

CANCEL

APPLY

HELP

F

G. 22

U.S. Patent Sep. 15, 2015 Sheet 16 of 27 US 9,134,720 B2

176

178)

|
LPF PROPERTIES /}

GENERAL[PARAMETERS
—BLOCK PARAMETERS

NAME VALUE TYPE
Enableln 0|BOOLEAN
In 0.000000{REAL
Initialize 0]BOOLEAN
EnablelnConstan 1|BOOLEAN
InitializeConstant 0|BOOLEAN
Wiag 1.000000|REAL
Order 1JUSINT
FaultOption OJUSINT
FaultStateValue 0.000000|REAL
FaultCode OJUSINT
EnableQut 0[BOOLEAN
Qut 0.000000[REAL

£

EDIT MACRO BLOCK PARAMETERS »N

182— — 180
'[~MACRO BLOCK PARAMETERS
184 IANAME ALIAS FOR TH-186
| [PFT TnitializeConstantValue |InitialzeConstantValue [~
o[LPF] Wlag Wlag v
o{[PFL Order QOrder v
o|LPFL FaultOption v
190+HF EnableConstantValue |2
InitializeConstantValue | 188
WLag 1
o -
aultOption —
OK_JLClFaultStateValue o]

FIG. 23

US 9,134,720 B2

Sheet 17 of 27

Sep. 15, 2015

U.S. Patent

v¢ Ol

%001J(6€2 0/D|

|[03AVS LONJ[9¥ ‘S¥2078 NOILONNS IT8VIIVAY

¢¢l— 14 SS34d 'd13H ¥0d

991—/2 O0dOVWY2I190T NIV \[K]a]p o1
_ [»

614

|

A 4

NN

=

318YNII1dNYS p-------~-
1no NIP
1Nd31aYNT NIFTaYN3

uw_émz INIAOW

O]

IAVIN T™961

|
vLNdNI U|"_

¢INdNIp :
|

|
dclidin0 elndNip-------- mm--- 1
qiindino TiNdNIp-------- b-——-b-a T d
qINd31aWN NIFTENIP

4 mxogm OUOVIN

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

|

|

|

Jd |

=z odovW T—v61 !
| |
|

|

-

—

oo~ 8

v

[—/ %0018 OOV X_IVoID01/ JAON XHLV/

g
\/ 31NdNOD w”._m<n__>_oox_ af»

tO087

[4

861l <l [O]alo]allr

Flo®lale @ t g

d1dH S700. SNOLLYIINNWACD MIIA_L1dd 3114

XSO

[101901] = 0 *¥0.1Id3 Y00T18/NOILONN4 O

ec1—"

U.S. Patent Sep. 15, 2015 Sheet 18 of 27

76

MACRO 2 PROPERTIES
GENERALJPARAM ETERSI/_204
NAME VALUE TYPE
Enableln O|BOOLEAN
Tnput 1 O[BOOLEAN
Input 3 01BOOLEAN
Input 2 0.000000{REAL
Input 4 0.000000{REAL
EnablelnConstan 1|BOOLEAN
[PF2 InitializeCo 0IBOOLEAN
[PF2 Wlag 1.000000JREAL
LPF2 Order 1JUSINT
LPF2 FaultOption OLUSINT
EnableQut O[BOOLEAN
Quiput T 0/ BOOLEAN
Output 2 0.000000]REAL

[oK |]|caNceL||[APPLY |[HELP |

2}2 214 2}6
MACRO 2 PROPERTIES | \
NAME STATUS __[INSTANCES [SECURITY
MACRO 1 INCOMPLETED f UNPROTECIED
MACRO 2 QbMPLETED 1 U ’?OTtE TED

2(l)8 2}0

[MODIFY || DELETE| | EXIT |

US 9,134,720 B2

202

J

FIG. 25

206

FIG. 26

US 9,134,720 B2

Sheet 19 of 27

Sep. 15, 2015

U.S. Patent

¢6l

%001][(9 T€2) Q3AYS _LONJB% 30018 NOLLONNS F18YIIVAY 21— 14 553¥d 'd13H ¥04
991—'¢ O4OVIA0190T NIV N[4a]p b
q _ o
. ! | 318YNIZTdNYS [=== -~ :
“ " q.Lno NIp “
| i qINGTENN: NTIENNI |
i i 3YEIAY. ONIAOW | ,
" i B 3N 96T
“ " | |
m m m m
....... S S NG 05 2 S
“ " ! p1ncNIp— _
" “ ! ¢LndNI
“ " ! qeindIn0 €1NdNIp-===-=,
/ | MOGNIN, 510018 OB0YN_N3d0 | qLndlno LindNIp----~-aC T 0
| 5078 GYOuIT S5THa | qLnoTIevNI NITIEWNI I
741~} NOHINEIG Y018 OHOVW_N3dO " ¢ %0078 OHOVH
| | Y3OVNVIN 0018 YOV | Iz 2 oMovw J—6I
862 Y0078 OYOYW 3LYRYI [¢ Y0018 O¥VA J_ger !
> " 30dN0SH
d 2 [3+7610 1037 v
= 8I1I—/Y078 OHOVA X_1vaID01/ 3A TUVANO) |VaWO0OX[4[o] 0373
021 [93N J901 DEIRGIEEEAL
dT3H [STOOL]SNOILVIINNWNOD MIIA 113 3114

XE0

9g1— [121907] - 0°H0LId3 %3018 NOLLONNIO

US 9,134,720 B2

Sheet 20 of 27

Sep. 15, 2015

U.S. Patent

8¢ Ol

| |
" 319YNITTINYS p--------
" d1no NIP
“ qINGITEWNT NITIgVNIP
m
“

ua_<5>< ONIAOW
B 3IAVN T—961

1
1
1
1
1
1
'_________J

g1z — MOGNTAL Y0018 040V N30 | | Al
INOILINI3Q 3dAL Y0018 OYOVA N3dO | !
gc7— YIDYNYIN %0019 OHOVN | |
............ NENTNE S3ILH3IdoYd [a SR D —
NOILdI¥JS3a ANVH3dO NIV 1103 v1NdNIp " |
SNI+ 1TV “ININITI dav ZLNdNIb “
73 313130 kIndIno €1ndNifp-------- (S \
/ A+T810 JISVd [[LNdLNO TLNdNIfp-------- I LT
¢61— 3+T419 INFANTTI AJOD LNoF1ewN NITgvN3pp “
X+7410 INIW3T3 1ND |z %0079 OHOWW m
B 2 ONOYW T—v61 |

US 9,134,720 B2

Sheet 21 of 27

Sep. 15, 2015

U.S. Patent

%00TI[(T0T "6 LE)I |[G3AVS LONIBY 'SY9078 NOILONNL F18VIIVAV

¢¢l— 14 SS3¥d 'd13H ¥0d

99T—/¢ OOV XQ1907 NIVANK]| afp|pi
| D

¢Ll

AlddV

3197130
NOILINIJ3d %3078 OHOVA N3dO

INFJNANOD day

J18YNITNdAVS P === ~-~ n 4

1no NI ~ - 1INdN)
qIn0T1gYNT NIFIEYNIE

JOVHIAY ONIAOW
B JAVA [/

| TV 103T3S
m “INJWIT3 aay .
% | “ Emin ding uN_éEz_ _ ,
" " " F-dlnoTigvng NiZTevkzp !
i i [IN0R-~ (31714 5S¥d MOT| L - . TN
m m mo:|\\ 4d1 mH
a) g Y
—_— STI=/ 0018 04OV 1vJID0T/ IAOW XHIVN/ FINdNOD X 3dvd N0 X[<] v] Ty
0ct 861 i) (D] aD] A TTo B IaIm % ¥ g
\ d13H ST001 SNOILYIINNWINOD M3IIA 113 114
yo [XEO [101901] - 0 *¥OLIA3 Y3078 NOILINNA[J

U.S. Patent Sep. 15, 2015 Sheet 22 of 27 US 9,134,720 B2

146 148 150 142
| | 4

44 [MACRO{BLOCK DEFINITION/DIALOG /
™ {GENERAL INPUT/OUTPUT Y PRRAVETER SECURTTY—

222153 PASSWORD ENABLED
NAME PASSWORD:

CONFIRM PASSWORD:

158 ~JL 106 C Ok | CANCEL [HEP |

224
/

(MACRO BLOCK PASSWORD

ENTER PASSWORD

0K CANCEL

FIG. 31

U.S. Patent Sep. 15, 2015 Sheet 23 of 27 US 9,134,720 B2

326

CONDITION OUTPUT
INPUT > HHLimit (INCLUDING THE CASE WHEN 0x000C
HLimit=HHLimit)
HLimit <INPUT <HHLimit 0x0004
LLimit <INPUT < HLimit 0x0000
LLLimit<INPUT<LLimit 0x0002
INPUT < LLLimit (INLUDING THE CASE WHEN 0x0003
LLimit=LLLimit)

FIG. 32

US 9,134,720 B2

Sheet 24 of 27

Sep. 15, 2015

U.S. Patent

€€ Ol

i 1 INdNT DOTYNY

NVI1004]0__ 50
QYOMA[F#91 81edWwo)
qHOMA|r#91 YSEN
QHOMA[0#91 000
JdAL INTVA TNUN
|S¥3 1INV [TYEINTD _
S31143d0¥d DIAW "
| IHYdNOIPp |
_ YSYWP !
1 INd1N0 TY1RI0 - --- g 153d 3NHNOSp——d1n0 NI
m WND3 NSYW m NYYTY
" W_ D3AN " =1 WY
\ " \ ")
! 0€2 ! 82¢

US 9,134,720 B2

Sheet 25 of 27

Sep. 15, 2015

U.S. Patent

7€ Ol

¢ec

T
I
I
I
m
WIEWHH B
I
I
I
I
I
I
I
I

11530

JHVYdNOD

U uvu

334N0S

I
|
!
|
m WSYIN
1
|

YNDI SV
= DN

~0€&¢

==

LR

q 1530
! YNDI YSY
1

3 DI

JHVYdNOI P

304N0S

41530

JHVdNOO P

ASYW P

Dl 14 m
304N0S p——

YN0 HSY _

e
1
|

EEFTo

=3

q153d
TYNDI HSYA

HYdW0O P
WSYA P
J04N0OS p—

D3N

<0t¢

NI

U.S. Patent Sep. 15, 2015 Sheet 26 of 27 US 9,134,720 B2

COMPOSITE ALARME=
COMPOSITE ALARM 01

ANALOG INPUT 1 INPUT LLALARM?' ;---- CL_DIGITAL OUTPUT 1
LALARMP = === CLDIGITAL OUTPUT 2N, 93¢

HALARMR —-r-- G DIGITAL QUTPUT 3
HHALARM; ’\\---2-3 DIGITAL OUTPUT 4

4-N--=-=-==d

———mm e e

A B
: :
TEST 01 | DELETETEST 01
EREP DELETETEST &5
GlENABLEN EMABLEOUT o~ -~~~ < EVABLEN ENPBLEOUT
1 dINPUTL QUTRUTIP, !

OUTPUT2p

<[*]LOGICI KI!

U.S. Patent Sep. 15, 2015 Sheet 27 of 27 US 9,134,720 B2

NO FORCES [»] OK
NO EDITS OPEN DEFINITION | |

cuT CTRL+X A
COPY CTRL+C
PASTE CTRL+V
DELETE DEL

MONITOR TAGS []
VERIFY |
CROSS REFERENCE CTRL+E
T &UN| BROWSE LOGIC... CTRL+L
PRINT =

INT__ _ =,
TR CEXPORT ADD-ON INSTRUCTION., E0UTPS -1

|_PROPERTIES IALT+ ENTER uT2b
+1]PARAMETERS AND
LOGIC

&-E1USER DEFINED I]
r-LJPARAMETERS ANE i
- L0GIC = |
SIDATA TYPES i
TE1USER DEFINED .
e-EISTRINGS i

:

o
oo
OO0

ol
B 0=
=2

s

=
o
=

ST .
-ﬁ‘ljlli:rl_l

T T
x=
j—
T

US 9,134,720 B2

1
MACRO FUNCTION BLOCK FOR
ENCAPSULATING DEVICE-LEVEL
EMBEDDED LOGIC

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Non-Provisional patent application
claiming priority to U.S. Provisional Patent Application No.
61/304,227, entitled “Multiple Boolean Inputs and Outputs
for Device Function Blocks”, filed Feb. 12, 2010, U.S. Pro-
visional Patent Application No. 61/304,261, entitled “Auto-
matic Device Parameter Binding Method”, filed Feb. 12,
2010, and U.S. Provisional Patent Application No. 61/304,
275, entitled “Macro Function Block for Encapsulating
Device-Level Embedded Logic”, filed Feb. 12, 2010, all of
which are herein incorporated by reference.

BACKGROUND

The present invention relates generally to the field of con-
figuring logic instructions in automation devices, and more
specifically to techniques for encapsulating device-level
embedded logic into user-defined instructions.

Logic solving capability may be programmed into various
sensor and actuator devices, such as input/output (I/O)
devices, motor drives, relays, push buttons, and other auto-
mation devices to improve the performance of the devices and
to enable limited but rapid response to automation needs
without specific direction from a central automation control-
ler. For example, such logic solving capability may control
outputs and manage status information of the automation
devices to control operation of other components directly or
closely connected to the devices. The configuration of the
logic solving capability may be accomplished through visual
editing tools, which provide graphical interfaces for config-
uring functions blocks that encompass the local control func-
tions for the devices. Such distributed control allows low-
level devices to perform operations heretofore performed
only by reference to logic in one or more network-connected
automation controllers. Application-specific logic program-
ming must often be performed repeatedly within devices
and/or between devices. Often, there is no easy way to reduce
the number of repeated programming steps.

DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood when the
following detailed description is read with reference to the
accompanying drawings in which like characters represent
like parts throughout the drawings, wherein:

FIG. 1 is a diagrammatical representation of an exemplary
control and monitoring system for controlling and monitoring
a machine and/or process;

FIG. 2 is a diagrammatical representation of relationships
of the exemplary control and monitoring system of FIG. 1;

FIG. 3 is a block diagram of components of an exemplary
automation device;

FIG. 4 is a block diagram of components of an exemplary
configuration station for configuring the automation devices
of FIG. 3;

FIG. 5 is a visual representation of an exemplary browser
of FIG. 4 for visually displaying the configuration of a par-
ticular automation device;

FIG. 6 is a block diagram of an exemplary Macro function
block used with other function blocks;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 is an exemplary state transition diagram illustrating
states during configuration of the automation device;

FIG. 8 is an exemplary state event matrix for the Macro
function block type definition;

FIG. 9 is a partial screenshot of the browser of FIG. 4
illustrating a new Macro Block tab;

FIG. 10 is an exemplary pop-up menu that enables the
designer of the automation device to select an Add Element
menu item;

FIG. 11 is an exemplary element list dialog that is launched
when the designer selects the Add Element menu item of FIG.
10;

FIG. 12 is a partial screenshot of the browser of FIG. 4
illustrating the Add Element menu item being selected by the
designer from a main Edit menu;

FIG. 13 is a partial screenshot of the browser illustrating
the designer clicking a Create Macro Block sub-menu item
from a main Tools menu and a Macro Block sub-menu under
the main Tools menu;

FIG. 14 is a partial screenshot of the browser illustrating a
Macro function block editing window, which may be used for
editing Macro function blocks;

FIG. 15 is an exemplary Macro Block Definition dialog
that pops up when the designer selects a Create Macro Block
sub-menu item;

FIG. 16 is the exemplary Macro Block Definition dialog of
FIG. 15 when an Input/Output tab is selected;

FIG. 17 is the exemplary Macro Block Definition dialog of
FIG. 15 when a Parameter tab is selected;

FIG. 18 is a partial screenshot of the browser illustrating a
Close menu item being selected;

FIG. 19 is a screenshot of the browser illustrating two
function blocks having been dragged from function block
instructions of an Instruction Toolbar;

FIG. 20 is a screenshot of the browser illustrating the
designer clicking an Open Macro Block Definition sub-menu
item from the main Tools menu and the Macro Block sub-
menu under the main Tools menu;

FIG. 21 is a screenshot of the browser illustrating the
designer right-clicking a mouse on a Macro function block
editing window;

FIG. 22 is an exemplary function block property dialog that
pops up when the designer clicks on a target function block;

FIG. 23 is the exemplary function block property dialog of
FIG. 22 when an Edit Macro Block Parameter button has been
pressed and a list of externally viewable Macro function
block parameters are displayed;

FIG. 24 is a screenshot of the browser illustrating a Macro
function block being used with a component function block in
a main logic window of the browser;

FIG. 25 is an exemplary Macro function block property
dialog that pops up when the designer clicks on a button in a
top-right corner of a Macro function block instance;

FIG. 26 is an exemplary Macro Block Manager dialog that
pops up when the designer selects a particular Macro function
block instance in the Macro function block editing window
and selects a Macro Block Manager option;

FIG. 27 is a screenshot of the browser illustrating the
designer clicking the Open Macro Block Definition sub-
menu item from the main Tools menu and the Macro Block
sub-menu under the main Tools menu;

FIG. 28 is a partial screenshot of the browser illustrating
the designer right-clicking the mouse on a Macro function
block instance;

FIG. 29 is a screenshot of the browser illustrating the
designer applying all of the edits by clicking on an Apply
menu item;

US 9,134,720 B2

3

FIG. 30 is the exemplary Macro Block Definition dialog of
FIG. 15 when a Security tab is selected;

FIG. 31 is an exemplary Macro Block Password dialog that
is displayed when the designer attempts to use a password-
protected Macro function block;

FIG. 32 is a list of typical conditions and outputs of an
exemplary Alarm function block;

FIG. 33 is a partial screenshot of the browser illustrating an
exemplary Alarm function block being used with a Mark
Equal (MEQ) function block;

FIG. 34 is an exemplary embodiment of the logic of a
Composite Alarm macro function block;

FIG. 35 is an exemplary embodiment of the Composite
Alarm macro function block;

FIG. 36 illustrates exemplary nesting of multiple Macro
function blocks; and

FIG. 37 is a partial screenshot of the browser, illustrating
how Export/Import instructions may be selected by the
designer.

BRIEF DESCRIPTION

The present invention provides techniques for encapsulat-
ing device-level embedded logic into user-defined instruc-
tions using device configuration software. More specifically,
the disclosed embodiments enable add-on instructions for
device configuration embedded logic. Programming inter-
faces specific to an application or device may be combined
into a single instruction as a reusable Macro component that
may be reused in the same or different applications or devices.

DETAILED DESCRIPTION

FIG. 1 is a diagrammatical representation of an exemplary
control and monitoring system 10, such as for industrial auto-
mation, for controlling and monitoring a machine and/or
process 12. The system 10 includes a human-machine inter-
face (HMI) 14 adapted to collaborate with components of the
machine/process 12 through an automation controller 16
(e.g., a remote computer, programmable logic controller
(PLC), or other controller). The automation controller 16 is
adapted to control and monitor automation devices 18, such
as the actuators 20 and the input/output (I/O) devices 22
(typically sensors or I/O modules coupled to sensors) illus-
trated in FIG. 1. Specific examples of low-level automation
devices 18 as described herein include I/O terminals, motor
drives, motor starters, overload relays and other types of
relays, push buttons, and so forth. The automation devices 18
may interact directly with the machine/process 12 or may
interact with other automation devices 18, such as the sensors
24 and actuators 26 illustrated in FIG. 1. Collaboration
between the HMI 14, the automation controller 16, and auto-
mation devices 18 of the machine/process 12 may be facili-
tated by using any suitable network strategies. Indeed, an
industry standard network 28 may be employed, such as
DeviceNet, ControlNet, Profibus, Modbus, or more common
standards such as EtherNet and Internet protocols, to enable
data transfer. Such networks 28 permit the exchange of data in
accordance with a predefined protocol, and may also provide
power for operation of networked elements.

As described in greater detail below, the automation
devices 18 may include processors, memory, and low-level
embedded logic to enable local (e.g., distributed) control of
the automation devices 18 with or without the need to com-
municate with HMIs 14 or automation controllers 16 (at least
prior to making a control decision). The automation devices
18 may include functionality by which they read from or write

10

15

20

25

30

35

40

45

50

55

60

65

4

to specific memory or registers of memory. For example, the
automation devices 18 may write to or read from registers 30
of'one or more automation controllers 16 or even local regis-
ters 30 within the automation devices 18 (including registers
within other low-level devices). Ina simple case, for example,
an automation device 18 may simply access a piece of data
(e.g., a state of a component as determined by a sensor), and
generate an output signal to write a value to one or more
registers 30 corresponding to the state of a different net-
worked device. Much more complex functionality can, of
course, be configured. In an industrial control and monitoring
context, for example, such automation devices 18 may emu-
late operation of a range of physical components, such as a
momentary contact push button, a push button with delayed
output, a switch, and so forth. As described in greater detail
below, many pre-programmed device elements (e.g., function
blocks) may be available for use by the automation devices
18. Such function blocks may be accessible via a network, or
may be resident on the automation devices 18.

FIG. 2 is a diagrammatical representation of relationships
of'the exemplary control and monitoring system 10 of FIG. 1.
As illustrated, the HMIs 14, automation controllers 16, actua-
tors 20, and I/O devices 22 form a somewhat triangular hier-
archical relationship, with the automation controllers 16 in
the center of hierarchy, and the automation devices 18 (e.g.,
the actuators 20 and the I/O devices 22) at the lower end of the
hierarchy. As illustrated, all of the components of the control
and monitoring system 10 may communicate with each other,
but the low-level automation devices 18 typically receive
commands from the automation controllers 16 and/or the
HMIs 14. However, the disclosed embodiments enable more
robust distributed control of the automation devices 18 by
embedding low-level logic directly into the automation
devices 18 such that they are capable of making low-level
computations and decisions without the need to communicate
with the HMIs 14 or the automation controllers 16, at least
before the computations and decisions are made, and may
output signals generated by the computations and decisions
without specific commands from the automation controller
16 or the HMI 14. In other words, the disclosed embodiments
enable component level devices, component class devices,
architecture level devices, and architecture class devices (e.g.,
1/O terminals, motor drives, motor starters, overload relays
and other types of relays, push buttons, and so forth) to be
embedded with low-level automation control logic. This
proves advantageous, for example, when the network 28
described in FIG. 1 is experiencing temporary communica-
tion problems, or simply when local computations and deci-
sions are desirable.

FIG. 3 is a block diagram of components of an exemplary
automation device 18. As illustrated, each automation device
18 may comprise a configurable tool built around a micro-
processor 32. In addition to the processor 32, the illustrated
embodiment includes a memory module 34, which may store
data and routines (e.g., computer programs) and components
such as a run-time library 36 that includes the pre-pro-
grammed device elements (e.g., function blocks) described
above. The memory module 34 may also include configura-
tion information for the respective automation device 18. For
example, as described in greater detail below, each automa-
tion device 18 may be configured with a specific combination
of function blocks such that the automation device 18 may be
capable of performing certain functions locally for the
machine/process 12. In particular, the processor 32 is config-
ured to execute the function blocks such that the low-level
distributed control functions are performed by the automation
device 18.

US 9,134,720 B2

5

As described below, a configuration station may be used to
write (i.e., download) the specific combination of function
blocks to the automation device 18. Conversely, as also
described below, the specific combination of function blocks
may be read (i.e., uploaded) from the automation device 18 by
configuration software of the configuration station. The func-
tion blocks are non-transitory code configured in an object
oriented programming language. Certain of the function
blocks may be configured to read at least one input from
and/or write at least one output to one or more of the registers
30 described above. As described below, in a present embodi-
ment, the function blocks themselves comprise objects
defined in an object oriented language. Such objects will
typically be defined by code that establishes data structures
consisting of data fields and methods. The fields may them-
selves define the properties of the object, while the methods
define operations performed by the object during real-time
operation of the automation system. The resulting objects
form self-sufficient modules that can read from particular
memory addresses (e.g., registers 30), write to particular
memory addresses, receive inputs (e.g., from sensors), and
output signals (e.g., to actuators) based upon their own data
structures and methods.

Each automation device 18 also includes a first interface 38
for communicating with functional circuitry 40, such as low-
level sensors that provide sensor readings as inputs, low-level
actuators that accept outputs generated by the function blocks
executed by the processor 32, and so forth. In addition, the
automation device 18 also includes a second interface 42 for
communicating with a configuration station during configu-
ration of the automation device 18 and/or for communicating
with HMIs 14 and/or automation controllers 16 during opera-
tion of the automation device 18.

FIG. 4 is a block diagram of components of an exemplary
configuration station 44 for configuring the automation
devices 18 of FIG. 3. As illustrated, the configuration station
44 may include configuration software executed by a proces-
sor 46. In addition to the processor 46, the illustrated embodi-
ment includes a memory module 48, which may store com-
puter programs and components such as configuration
software 50 and a design-time library 52 that includes the
pre-programmed device elements (e.g., function blocks)
described above. The configuration station 44 is capable of
configuring the automation devices 18 with specific combi-
nations of function blocks such that the automation devices
18 may be capable of performing certain functions locally for
the machine/process 12. The configuration software may be
installed on the configuration station 44 (e.g., as a stand-alone
application), or may be accessed by any of a range of remote
data exchange schemes (e.g., through a computer browser).
Moreover, in some implementations, the configuration or
design-time environment may be served to the configuration
station 44 by the automation device 18 (e.g., by a server
application operative on the automation device 18). In a pres-
ently contemplated embodiment, the configuration software
50 may include or be based upon a product available com-
mercially under the designation RSNetWorx, from Rockwell
Automation, Inc. of Milwaukee, Wis.

In particular, the configuration station 44 may be used to
write, adapt, and load (i.e., download) a specific combination
of function blocks to a specific automation device 18. Con-
versely, a specific combination of function blocks may be
read (i.e., uploaded) from automation devices 18 by the con-
figuration software 50 of the configuration station 52. Again,
in a presently contemplated embodiment, the function blocks
are non-transitory code configured in an object oriented pro-
gramming language. Certain of the function blocks are con-

10

15

20

25

30

40

45

50

55

60

65

6

figured to read at least one input from and/or write at least one
output to one or more of the registers 30 described above.

The configuration station 44 also includes a first interface
54 for communicating with the automation devices 18, such
that the configuration station 44 can write a specific combi-
nation of function blocks to a specific automation device 18
and read a specific combination of function blocks from a
specific automation device 18. In addition, the configuration
station 44 also includes a second interface 56 for communi-
cating with an input device 58 and a display 60, which are
used to receive inputs from a designer 62 (e.g., a user that
configures the automation device 18 with the specific combi-
nation of function blocks) and visually display configuration
information for the automation device 18, respectively. In
particular, in certain embodiments, a browser 64 configured
to display a visual representation of the function blocks for a
specific automation device 18 may be displayed by the dis-
play 62. It should be noted that reference to a “browser” for
viewing and modifying configuration of the automation
devices 18 is not limited to web browsers or to any particular
browser. References to the browser 64 are merely intended to
be exemplary. More generally, the term “browser” is utilized
herein to reference software which includes any general pur-
pose viewer.

FIG. 5 is a visual representation of an exemplary browser
64 of FIG. 4 for visually displaying the configuration of a
particular automation device 18. In particular, the browser 64
displayed in FIG. 5 may be referred to as a function block
editor. As illustrated, the particular automation device 18
being configured includes two function blocks 66 (i.e., a
Boolean And (BAND) function block 68 and a Timer On
Delay with Reset (TONR) function block 70). As illustrated,
the BAND function block 68 is configured to receive two
inputs 72 and output one output 74. The two inputs 72 into the
BAND function block 68 may, for example, be values read
from a register 30. In the particular configuration illustrated in
FIG. 5, the BAND function block 68 acts upon the two
received inputs 72 and outputs the output 74, which is
received by the TONR function block 70 as a first input 72
(e.g., TimerEnable). As illustrated, the TONR function block
70 also receives a second input 72 (Reset) from a network-
linked source. The TONR function block 70 acts upon the two
inputs 72 and outputs a single output 74. As illustrated, the
single output 74 from the TONR function block 70 may, for
example, be written to a register 30 as well as be sent to a
network-linked source. The specific combination of function
blocks 66 illustrated in the browser 64 of FIG. 5 are merely
exemplary and not intended to be limiting. Although illus-
trated as only having two function blocks 66, numerous dif-
ferent function blocks 66 may be used for any given automa-
tion device 18. Indeed, the design-time library 52 used by the
configuration software 50 of FIG. 4 (and, similarly, the run-
time library 36 installed in the automation device 18) may
include hundreds of different types of function blocks 66
including, for example, Boolean function blocks (e.g., AND,
OR, XOR, NAND, NOR, XNOR, and so forth), bistable
function blocks (e.g., RS Latch, SR Latch, and so forth),
counter/timer function blocks (Up Counter, Up-Down
Counter, Pulse Timer, On Delay Timer, Off Delay Timer, and
so forth), and various other types of function blocks.

The disclosed embodiments enable multiple function
blocks 66 to be combined into a single Macro function block
for re-use. In particular, a Macro function block creation
module of the configuration software 50 of FIG. 4 may be
used as a design environment for creating the Macro function
blocks. A Macro function block may be defined as an entity
that is composed of a group of component function blocks 66.

US 9,134,720 B2

7

All of the component function blocks 66 work together to
complete one comparatively complex task in the form of the
Macro function block. When the Macro function block has
been defined, designers 62 may apply an instance of the
Macro function block object in the configuration software 50.
In other words, the disclosed embodiments enable the encap-
sulation of multiple function blocks 66 into a single Macro
function block as add-on instructions for use in multiple
automation devices 18. The parameters of the internal func-
tion blocks 66 may be mapped to the inputs and outputs of the
Macro function block, such that these parameters are acces-
sible not only for other portions of the logic of a particular
automation device 18, but for other automation devices 18 as
well. For example, in certain embodiments, the Macro func-
tion blocks may be stored in the run-time library 36 of a
particular automation device 18, stored in the design-time
library 52 of a particular configuration station 44, distributed
and stored on multiple automation devices 18, distributed and
stored on multiple configuration stations 44, so forth. Indeed,
as described in greater detail below, the Macro function
blocks may be uploaded and downloaded to and from any
number of automation devices 18 using the configuration
software 50.

FIG. 6 is a block diagram of an exemplary Macro function
block 76 used with other function blocks 66. As illustrated in
FIG. 6, the main logic 78 of a given automation device 18
includes a Compare function block 80, an Arithmetic function
block 82, and the Macro function block 76. The Compare
function block 80 receives a first input 84 of the main logic 78
and the Arithmetic function block 82 receives a second input
86 of the main logic 78. A first output 88 from the Compare
function block 80 is a first output 90 of the main logic 78. A
second output 92 from the Compare function block 80 is
directed into the Macro function block 76. A sole output 94
from the Arithmetic function block 82 is also directed into the
Macro function block 76. A sole output 96 from the Macro
function block 76 is a second output 98 from the main logic
78.

As illustrated, the exemplary Macro function block 76 of
FIG. 6 includes two Boolean function blocks 100, an Arith-
metic function block 102, and a Compare function block 104.
These function blocks act upon the second output 92 from the
Compare function block 80 of the main logic 78 and the sole
output 94 from the Arithmetic function block 82 of the main
logic 78 to generate the second output 98 from the main logic
78. The use of the two Boolean function blocks 100, the
Arithmetic function block 102, and the Compare function
block 104 in the exemplary Macro function block 76 of FI1G.
6 illustrates the relatively complex functionality that can be
programmed into the Macro function block 76 using rela-
tively fundamental function blocks 66 (e.g., the two Boolean
function blocks 100, the Arithmetic function block 102, and
the Compare function block 104). In addition, the exemplary
Macro function block 76 may be saved and reused in other
automation devices 18.

The types of Macro function blocks 76 may be classified in
two categories, Dynamic and Static. Dynamic Macro func-
tion blocks 76 are defined by designers 62 by operating the
browser 64 described above with respect to FIG. 4. Designers
62 may program the logic, define I/O, configure the param-
eters, and so forth, for the definition of a Macro function block
type using these visual editing tools of the configuration
software 50. Static Macro function blocks are defined by
designers 62 when the automation device 18 is under devel-
opment. Designers 62 may not change these definitions, but
may only utilize them in the main logic of automation devices
18, and view the logic if passing the security checking.

10

15

20

25

30

35

40

45

50

55

60

65

8

Macro Function Block Class Attributes

The Macro function block object may be defined by vari-
ous class attributes. In a particular embodiment, Attribute IDs
1-23 may be used. Attribute IDs 1-7 may be optional.
Attribute 8 may be named “Instance List,” and may be a
required “Get” attribute, which returns a structure containing
the number of created instances and an array of their instance
numbers. Attribute 9 may be named “Type List,” and may be
a required “Get” attribute, which returns a structure contain-
ing the number of defined Macro function block types and an
array of their type IDs. Attributes 10 and 11 may not be
defined.

Attribute 12 may be named “FB Output List,” and may be
a conditional “Get” attribute that returns a structure with
detailed descriptions and parameters (e.g., a function block
index, the name defined for each output, a reference number
“n” for the FUNCTION_BLOCK_OUTPUT _n output to
cross-reference the entry to the corresponding electronic data
sheet (EDS) Binding Path entry, an interpretation option for
use with the EDS file, and an offset index foruse with the EDS
file) for each function block (FB) output. The “conditional”
nature of Attribute 12 is that it may be required if the auto-
mation device 18 does not support EDS files. The members of
this structure are intended to replace the information that
would otherwise appear in the EDS entries 1_FUNCTION-
_BLOCK_OUTPUT_n and 1_FB_OUTPUT_LIST.
Attributes 13-20 may not be defined.

Attribute 21 may be named “Maximum Number of
Instances,” and may be an optional “Get” attribute, which
returns the maximum number of Macro function block
instances that can be created. Attribute 22 may be named
“Maximum Number of Types,” and may be an optional “Get”
attribute, which returns the maximum number of different
Macro function block types that can be created. Attribute 23
may be named “Type Configuration Description,” and may be
an optional “Get” attribute that returns an array list of the
description on the specified type configuration. The size of
the array list should be equal to the class Attribute 22 (“Maxi-
mum Number of Types™). The array list may contain, for
example, the Macro function block type 1D, the usage clas-
sification (e.g., O—Dynamic, 1 —Static, Other—not
defined), the corresponding file instance to store the type
definition, the maximum size of memory (e.g., in bytes)
reserved for the specified file instance, and the maximum size
of a single packet (e.g., in bytes) that can be accepted for the
specified file instance.

Semantics of Macro Function Block Class Attributes

FUNCTION BLOCK OUTPUT LIST, ATTRIBUTE
12— This attribute provides a structure detailing the function
block outputs possible with this object. Each possible output
is assigned a unique number that is reflected in the “FB
Output Index” structure member. The configuration software
50 of FIG. 4 can display each output name as described in the
“FB Output Name String” member. For consistency among
automation devices 18, all products may use the strings
defined herein. If the product uses an EDS file, the EDS file
may also use the strings defined here. The “Reference Num-
ber” member of the structure indicates which binding path
section should be referenced for each output. The keyword for
a binding path section is 1_FUNCTION_BLOCK_OUT-
PUT_n, where n is the Reference Number member. This
allows function block outputs of similar data types to be
grouped together in the same data table. “Interpretation
Option” indicates how the FB Output Index Number should
be interpreted. The following values are defined: 0—the FB
Output Index Number may be interpreted as the function
block’s instance number, 1—the FB Output Index Number

US 9,134,720 B2

9

has no specific meaning, and 2—the FB Output Index Num-
ber may be interpreted as the function block’s process order.
The “Offset Index” member corresponds to the Member 1D
field inthe referenced 1_FUNCTION_BLOCK_OUTPUT n
entry. The index provides for the case where one function
block has multiple pieces of data within the same binding path
section. As described above, attribute 12 is required when this
information is not made available via an EDS.

MAXIMUM NUMBER OF INSTANCES, ATTRIBUTE
21— This attribute is used to indicate the maximum number
of Macro function blocks 76 that are allowed to be created in
a particular automation device 18 due to the limitation of the
resources. If this attribute is not supported, the limitation for
the number of instances will be determined dynamically in
the automation device 18.

MAXIMUM NUMBER OF TYPES, ATTRIBUTE
22— This attribute is used to indicate the maximum number
of'the type of Macro function blocks 76 that are allowed to be
registered due to the limitation of the resources. If this
attribute is not supported, the limitation for the number of
Macro function block type will be determined dynamically in
the automation device 18. Valid type identifiers should be
from 1 to the value of this attribute.

TYPE CONFIGURATION DESCRIPTION,
ATTRIBUTE 23—This attribute is used to provide the on-
line EDS capability information for the Macro function block
specific EDS entries Static_Type_Configuration_List and
Dynamic_Type_Configuration_List in the section [1_MAC-
RO_BLOCK]. TypelD is the supported Macro function block
type ID, Classification is an indication of the type classifica-
tion, File Instance is the corresponding file instance pre-
assigned for the specific type 1D, Max Size of File is the
maximum size of the file in bytes, and Max Size of Single
Packet is the maximum size of the each packet for operating
the file instance.

Macro Function Block Instance Attributes

Each Macro function block instance may be defined by
various instance attributes. In a particular embodiment,
Attribute IDs 1-23 may be used. Attribute 1 may be named
“Instance Type,” and may be a required “Set” attribute for
setting the type of the created Macro function block 76.
Attributes 2-19 may not be used. Attribute 20 may be named
“Enable in Binding Path,” and may be an optional “Set”
attribute for setting a structure containing the size of the
member path (e.g., in bytes), the member path (e.g., a packed
EPATH), and a flag indicating if the input should be comple-
mented. The complement flag indicates whether the true data
or the complement of the data referenced by the path should
be used. Attribute 21 may be named “Enable In Constant
Value,” and may be an optional “Set” attribute for setting a
constant value for use as the Enable In. Attribute 22 may be
named “Enable Out,” and may be an optional “Get” attribute,
which returns the enabled state for output. Attribute 23 may
be named “Process Order,” and may be a required “Set”
attribute for setting the initial sequence number of logic pro-
cessing for the component function blocks 66 inside the
Macro function block instance.

Semantics of Macro Function Block Instance Attributes

INSTANCE TYPE ID, ATTRIBUTE 1—This attribute is
used to indicate the type of the created instance. When the
request is received to set the value of this attribute, it should
verify if the value of type identifier has been created. If the
requested type is not created, the error INVALID_AT-
TRIBUTE_VALUE (0x09) may be returned.

ENABLE IN BINDING PATH, ATTRIBUTE 20—The
Enable In Binding Path attribute contains a path to the source
of information to be used for Enable In along with an indica-

15

20

25

35

40

45

10

tion of whether the data should be complemented. The source
may be a Boolean entity. The only valid segment types for this
attribute are Port, Logical, and Symbolic. Within logical seg-
ments, the Electronic Key and 8-bit Service ID Segments may
be invalid.

ENABLE IN CONSTANT VALUE, ATTRIBUTE
21—The value of Enable In to be operated on is determined
by the Enable In Binding Path and Enable In Constant Value
attributes. If the Enable In Binding Path is Null, the Enable In
Constant Value may be used in the operation. If the Enable In
Binding Path is non-Null, then the value of the bound path
may override the Enable In Constant Value and be used for the
logic operation. The value of Enable In will be used to decide
if the function block 66 starts to execute. If its value is 0
(Clear), the function block 66 does not execute and outputs
are not updated. If its value is 1 (Set), the function block 66
will execute.

ENABLE OUT, ATTRIBUTE 22—This attribute can be
used to cascade the Enable signal between the function blocks
66 to control the logic execution. The value of Enable Out is
determined by the value of Enable In. Ifthe value of Enable In
is 1, then the value of Enable Out will be 1; otherwise, if the
value of Enable In is 0, then the value of Enable Out will be 0.

PROCESS ORDER, ATTRIBUTE 23—FEach Macro func-
tion block instance contains multiple component function
blocks 66. Each component function block 66 will have its
own process number consecutively within the scope of the
Macro function block instance. The Process Order attribute
utilizes the lowest process number of the component function
blocks 66 to indicate the Macro function block instance’s
process order.

Common Services

The Macro function block object provides numerous com-
mon services. In a particular embodiment, the Macro function
block object may include a service named Reset, which may
be used to reset all the configurations for Macro type configu-
rations, Macro instance configurations, and so forth. The
Macro function block object may also include a service
named Create, which may be used to instantiate an object.
The response may contain the instance number. The Macro
function block object may further include a service named
Delete, which may be used to delete a specific instance. In
addition, the Macro function block object may include a
service named Get_Attribute_Single, which may return the
value of the specified attribute. The Macro function block
object may also include a service named Set_Attribute_S-
ingle, which may be used to modify an attribute value.
Request and Response Parameters for Common Services

RESET SERVICE (0X05) REQUEST PARAMETERS—
No extra request parameters are needed for the Reset service.

RESET SERVICE (0X05) RESPONSE PARAM-
ETERS—No parameters are returned with a success
response.

CREATE SERVICE (0X08) REQUEST PARAM-
ETERS—The Create service may include an Instance Num-
ber request parameter, which defines the requested instance
number.

CREATE SERVICE (0X08) RESPONSE PARAM-
ETERS—The Create service may include an Instance Num-
ber response parameter. If the Create request is successfully
serviced, the instance number may be returned in the response
message.

DELETE SERVICE (0X09) REQUEST PARAM-
ETERS—No extra request parameters are needed for the
Delete Service.

US 9,134,720 B2

11

DELETE SERVICE (0X09) RESPONSE PARAM-
ETERS—No parameters are returned with a success
response.

Object-Specific Services

The Macro function block object provides an object-spe-
cific service named Process_Macro_Encap_Message, which
may be used to process the encapsulated explicit request
message for the configuration of Macro function block type
definition. This service is used to perform services on, or
access the attributes of, the component function blocks 66
within an instantiated Macro function block 76.

Request and Response Parameters for Object-Specific Ser-
vices

Process_Macro_Encap_Message Service (0x4D) Request
Parameters—The Process_Macro_Encap_Message service
may include a Service ID request parameter, which is a ser-
vice code encapsulated in the message. The Process_Mac-
ro_Encap_Message service may also include a Service
Optional Data service, which is the data dependent on the
Service ID. The Service ID parameter specifies the encapsu-
lated service that is to be performed by the target of the
request. The values for the supported Service IDs may include
Create (i.e., create the component function block 66), Delete
(i.e., delete the component function block 66), Get_Attribu-
te_Single (i.e., get the attribute value of the component func-
tion block 66), and Set_Attribute_Single (i.e., set the attribute
value of the component function block 66).

Each valid Service ID in the table may include a Service
Optional Data value. For example, the Create (0x08) Service
Optional Data may include a Class ID parameter, which is the
class ID for the created component function block 66. In
addition, the Create (0x08) Service Optional Data may
include a Process Order parameter, which is a process
sequence ID in the overall logic program. The Delete (0x09)
Service Optional Data may include a Class ID parameter,
which is the class ID for the created component function
block 66. In addition, the Delete (0x09) Service Optional
Data may include a Process Order parameter, which is the
process order of the component function block 66 to be
deleted. The Get_Attribute_Single (0XxOE) Service Optional
Data may include a Class 1D parameter, which is the class ID
for the created component function block 66. In addition, the
Get_Attribute_Single (0xOE) Service Optional Data may
include a Process Order parameter, which is the process order
of the component function block 66. Further, the Get_At-
tribute_Single (0xOE) Service Optional Data may include an
Attribute ID parameter, which is the attribute ID to be read
from the component function block 66. The Set_Attribute_S-
ingle (0x10) Service Optional Data may include a Class ID
parameter, which is the class ID for the created component
function block 66. In addition, the Set_Attribute_Single
(0x10) Service Optional Data may include a Process Order
parameter, which is the process order of the component func-
tion block 66. Further, the Set_Attribute_Single (0x10) Ser-
vice Optional Data may include an Attribute ID parameter,
which is the attribute ID to be set in the component function
block 66. The Set_Attribute_Single (0x10) Service Optional
Data may also include an Attribute Value parameter, which
depends on the data type of the specified attribute.

Macro Type Definition Behavior

FIG. 7 is an exemplary state transition diagram 106 illus-
trating states during configuration of the automation device
18. FIG. 7 illustrates the following states: (1) Non-Existent
108 (e.g., the automation device 18 is without power or an
instance that has not yet been created), (2) Configuring 110
(e.g., the instance exists and is capable of being configured),
(3) Ready 112 (e.g., the Logic Supervisor Object (0x30E)

10

15

20

25

30

35

40

45

50

55

60

65

12

initiated the Apply service and this instance passed validation
and is awaiting further events), and (4) Active 114 (e.g., this
instance is executing its logic).

The Macro function block type definition state events may
include Power Loss (e.g., power is removed from the auto-
mation device 18), Power Up AND Saved Configuration (e.g.,
power is applied to the automation device 18 and the auto-
mation device 18 reads its non-volatile storage), Create Ser-
vice (e.g., the service was received), Get/Set Service (e.g., a
request was received to get or set an attribute, parameter, or
other setting), Apply Message (e.g., an internal message sent
by the Logic Supervisor object (0x30E) causing the instance
to validate its current configuration), Error Message (an inter-
nal message sent by the Logic Supervisor object (0x30E)
indicating that an Apply request has failed), Run Message
(e.g., an internal message sent by the Logic Supervisor object
(0x30FE) directing the instance to enter the Active state 114),
Stop Message (e.g., an internal message sent by the Logic
Supervisor object (0x30E) directing the instance to return to
the Configuring state 110), and Delete Service (e.g., the
Delete service or the Reset service was received). The effect
of the Macro function block type definition state events
depend on the current state of FIG. 7. FIG. 8 is an exemplary
state event matrix 116 for the Macro function block type
definition.

The instance attributes Instance Type and Enable In Bind-
ing Path may only be set in the Configuring state 110. If a
request is received to set these attributes in any other state, the
“Object State Conflict” error response should be returned.
Other settable attributes can be set in the Active state 114 as
well as in the Configuring state 110.

Use Case: Macro Function Block Visibility

FIG. 9 is a partial screenshot of the browser 64 of FIG. 4
illustrating a new Macro Block tab 118. The browser 64
functions as a Macro function block creation module in a
design environment, which enables a designer 62 to create
Macro function blocks 76 and configure specific Macro func-
tion blocks 76 for a particular automation process (e.g., the
machine/process 12 of FIG. 1). As illustrated, the new Macro
Block tab 118 appears in the Instruction Toolbar 120 as a new
category. In particular, the Macro Block tab 118 lists all of the
currently available Macro function blocks 76 in the project. If
there are no available Macro function block instructions that
have been defined, there are no buttons available when the
designer 62 chooses the Macro Block tab 118. If a Macro
function block 76 has not been completely defined, the cor-
responding button on the Instruction Toolbar 120 is disabled,
and that Macro function block 76 may not be dragged into the
main logic editing window 122.

FIG. 10 is an exemplary pop-up menu 124 that enables the
designer 62 of the automation device 18 to select an Add
Element menu item 126. The designer 62 may right-click the
mouse on the main logic editing window 122, causing the
menu 124 to pop up. The designer 62 may then click the Add
Element menu item 126. When doing so, an element list
dialog will be launched. FIG. 11 is an exemplary element list
dialog 128 that is launched when the designer 62 selects the
Add Element menu item 126 of FIG. 10. The element list
dialog 128 illustrates normal use of logic elements 130 during
logic creation. The element list dialog 128 lists all available
Macro function block 76, as well as other logic elements 130,
that have been completely defined. In the element list dialog
128, the designer 62 may select a Macro function block 76 to
create a Macro function block instance. Besides the option of
the pop-up menu 124 to add the element, the designer 62 may
also select the Add Element menu item 126 through a main
Edit menu of the browser 64. FIG. 12 is a partial screenshot of

US 9,134,720 B2

13

the browser 64 of FIG. 4 illustrating the Add Element menu
item 126 being selected by the designer 62 from a main Edit
menu 132.

Use Case: Define Macro Function Block

The designer 62 may use the browser 64 in Editing mode to
define a Macro function block 76. In particular, FIG. 13 is a
partial screenshot of the browser 64 illustrating the designer
62 clicking the Create Macro Block sub-menu item 134 from
a main Tools menu 136 and a Macro Block sub-menu 138
under the main Tools menu 136. When this is done, a tabbed
window for Macro function block 76 editing is created. FI1G.
14 is a partial screenshot of the browser 64 illustrating the
Macro function block editing window 140, which may be
used for editing Macro function blocks 76. The main logic
editing window 122 and the Macro function block editing
window 140 may be available at the same time.

In addition, when the designer 62 selects the Create Macro
Block sub-menu item 134, a Macro Block Definition dialog
pops up. FIG. 15 is an exemplary Macro Block Definition
dialog 142 that pops up when the designer 62 selects the
Create Macro Block sub-menu item 134. The Macro Block
Definition dialog 142 is used to enter and show the generation
information about a specific Macro function block 76. The
Macro Block Definition dialog 142 may include four tabs: a
General tab 144, an Input/Output tab 146, a Parameter tab
148, and a Security tab 150. On the General tab 144 (illus-
trated in FIG. 15), there is a Name field 152 and a Description
field 154. The designer 62 is required to input a unique name
for the Macro function block 76. When the designer 62
presses the illustrated OK button 156 or Logic button 158, the
name will be checked to see if it is unique. If it is not, the
designer 62 is prompted to input another name.

FIG. 16 is the exemplary Macro Block Definition dialog
142 of FIG. 15 when the Input/Output tab 146 is selected. The
Input/Output tab 146 of FIG. 16 shows the Enable In macro
function block input and the Enable Out macro function block
output as grayed out and read-only. The designer 62 may
define the input/output ports of the Macro function block 76
in the Input/Output tab 146. In particular, the designer 62 may
input the intended name for the target port in the Name
column 160, Input or Output may be selected in the Usage
column 162, and the data type may be selected in the Data
Type column 164. There are only two data types that may be
selected, BOOLEAN and ANALOG. The data type BOOL-
EAN indicates that the defined Input/Output can only be
bound with Boolean data, whereas the type ANALOG repre-
sents a wide class of basic data types. Any basic data type
other than Boolean may be viewed as the ANALOG type.

FIG. 17 is the exemplary Macro Block Definition dialog
142 of FIG. 15 when the Parameter tab 148 is selected. By
default, there are no parameters available in the Parameter tab
148, or only the Enable input constant value parameter if the
enable line is supported. When the designer 62 presses the OK
button 156, the modifications made by the designer 62 in the
Macro Block Definition dialog 142 will be applied. In addi-
tion, when the designer 62 presses the OK button 156, the
tabbed Macro function block editing window 140 of FIG. 14
is created and the Macro function block 76 is added to the
Macro Block tab 118 of the Instruction Toolbar 120. After the
designer 62 edits the logic to define the Macro function block
76 in the Macro function block editing window 140, the
designer 62 may move the mouse on a Macro function block
tab 166 and right-click on the mouse to choose a Close menu
item 168 to close the selected tabbed Macro function block
editing window 140. FIG. 18 is a partial screenshot of the
browser 64 illustrating the Close menu item 168 being
selected.

10

15

20

25

30

35

40

45

50

55

60

65

14

Use Case: Configure Macro Function Block Logic

The designer 62 may use the browser 64 in Editing mode to
edit an active Macro function block 76. In particular, FIG. 19
is a screenshot of the browser 64 illustrating two function
blocks 66 having been dragged from function block instruc-
tions of the Instruction Toolbar 120. The designer 62 is using
the two illustrated function blocks 66 (e.g., the LPF (low-pass
filter) function block 170 and the MAVE (moving average)
function block 172) to build up the definition of the Macro
function block 76 exactly the same as configuration is done in
the main logic. The designer 62 may launch the Macro Block
Definition dialog 142 of FIGS. 15 through 17 in one of two
ways. For example, FIG. 20 is a screenshot of the browser 64
illustrating the designer 62 clicking the Open Macro Block
Definition sub-menu item 174 from the main Tools menu 136
and the Macro Block sub-menu 138 under the main Tools
menu 136. Another way is to right-click the mouse on the
Macro function block editing window 140. FIG. 21 is a
screenshot of the browser 64 illustrating the designer 62
right-clicking the mouse on the Macro function block editing
window 140. As illustrated in FIG. 21, the Open Macro Block
Definition sub-menu item 174 becomes available.

From the Macro function block editing window 140, open-
ing a Property dialog for an individual function block 66 of
the Macro function block 76 enables the designer 62 to edit
the properties of the Macro function block 76 that may be
accessible outside without opening up the Macro Block Defi-
nition dialog 142. By clicking on the target function block 66,
a function block property dialog may be launched. FIG. 22 is
an exemplary function block property dialog 176 that pops up
when the designer 62 clicks on a target function block 66. As
illustrated, a Parameters tab 178 may be selected to view the
parameters of the target function block 66 (e.g., the LPF
function block 170 of FIGS. 19-21).

An Edit Macro Block Parameter button 180 may be pressed
to display a list of externally viewable Macro function block
parameters. FIG. 23 is the exemplary function block property
dialog 176 of FIG. 22 when the Edit Macro Block Parameter
button 180 has been pressed and the list 182 of externally
viewable Macro function block parameters are displayed. A
name column 184 is the name of the Macro function block
parameter, which cannot be empty and must be unique. An
Alias For column 186 is the alias of the Macro function block
parameter. When the designer 62 clicks any cell in the Alias
For column 186, a combo window 188 is displayed listing all
of the available parameters in the specific function block 66.
The designer 62 may choose which function block parameter
is referenced by the Macro function block parameter. When a
function block parameter has been referenced, that function
block parameter will no longer be viewable in the combo
window 188.

There will always be one empty row 190 displayed in the
list 182 of externally viewable Macro function block param-
eters. Every time the designer 62 inputs a Name or chooses a
function block attribute in the Alias For cell, a new Macro
function block parameter is created and another new empty
row 190 is displayed. The designer 62 may also delete macro
function block parameters from the list 182 of externally
viewable Macro function block parameters. In addition, the
designer 62 may launch the Macro Block Definition dialog
142 of FIGS. 15 through 17 by double-clicking on the list 182
of externally viewable Macro function block parameters.

Returning now to FIG. 21, when the designer 62 is finished
modifying the Macro function block logic, the designer 62
may right-click the mouse on the Macro function block edit-
ing window 140 and select the Apply menu item to apply the
modifications. Ifthe logic in the Macro function block passes

US 9,134,720 B2

15

verification, its corresponding button on the Macro Block tab
118 of the Instruction Toolbar 120 is enabled. Copying and
pasting between the main logic screen and the Macro function
block editing window 140 is supported. When the Macro
function block logic is being configured, all of the Macro
function block instructions in the Instruction Toolbar 120
may be grayed out.
Use Case: Macro Function Block in the Main Logic

The designer 62 may use the browser 64 to add a Macro
function block 76 to the main logic. FIG. 24 is a screenshot of
the browser 64 illustrating a Macro function block 76 being
used with a component function block 66 in a main logic
window 192 of the browser 64. In particular, the designer 62
is using the “Macro 2” macro function block 194 with a
MAVE (moving average) component function block 196. The
designer 62 may create instances of Macro function blocks 76
in the main logic window 192 in various ways. For example,
as described above, the designer 62 may select the Add Ele-
ment sub-menu item 126 from the main Edit menu 132. In
addition, a button 198 in the Macro Block tab 118 of the
Instruction Toolbar 120 may be clicked or dragged and
dropped into the main logic window 192. Each Macro func-
tion block instance is added to the main logic window 192
without external connections. The external visibility of the
Macro function block instance follows the convention: the
digital input and output for the Macro function block instance
will be graphically presented as ¢ and [D, respectively, and
the analog input and output for the Macro function block

instance will be graphically presented as < and [, respec-
tively.
Use Case: Configure Macro Function Block Instance Param-
eters

Once the Macro function block instance (e.g., the Macro 2
block 194 of FIG. 24) has been added to the main logic
window 192, the designer 62 may configure the parameters of
the Macro function block instance. The designer 62 may click
the button 200 in the top-right corner of the Macro function
blockinstance. FIG. 25 is an exemplary Macro function block
property dialog 202 that pops up when the designer 62 clicks
onthe button 200 in the top-right corner of the Macro function
block instance. As illustrated, a Parameters tab 204 may be
selected to view the external parameters of the Macro func-
tion block instance (e.g., the Macro 2 block 194 of FIG. 24)
and modify the external parameters if they are settable. If the
Macro function block 76 is security-enabled, the designer 62
is prompted to input a password before entering the Macro
function block editing window 140. In the Macro function
block editing window 140, the Macro function block logic
configuration and layout for editing the component param-
eters are exactly the same as when the Macro function block
76 is defined.
Use Case: Manage Macro Function Block

The designer 62 may use the browser 64 to manage Macro
function blocks 76. FIG. 26 is an exemplary Macro Block
Manager dialog 206 that pops up when the designer 62 selects
aparticular Macro function block instance in the Macro func-
tion block editing window 140 and selects a Macro Block
Manager option. In particular, the designer 62 may choose the
Macro Block Manager option with a Macro function block
instance selected by clicking a Macro Block Manager sub-
menu item from the main Tools menu 136 and the Macro
Block sub-menu 138 under the main Tools menu 136 of the
browser 64 (see, e.g., FIG. 20). The Macro Block Manager
dialog 206 lists all Macro function blocks 76, regardless of
their completion status. Individual Macro function blocks 76
may be selected and either modified by pressing a Modify

40

45

50

55

16

button 208 or deleted by pressing a Delete button 210. If the
browser 64 is not in Editing mode, the Modify button 208 and
the Delete button 210 are disabled. Conversely, if the browser
64 is in Editing mode, the Modify button 208 and the Delete
button 210 are enabled. A Status column 212 shows whether
the particular Macro function block 76 has been completed.
An Instances column 214 shows how many Macro function
block instances have been created. This information gives a
summary about the Macro function block instances being
used when the designer 62 intends to modify or delete the
defined Macro function block 76. A Security column 216
shows whether the particular Macro function block 76 is
under password protection.

Use Case: Modify Macro Function Block Definition

As described above, the designer 62 may use the browser
64 in Editing mode to modify an active Macro function block
76. Returning to the example illustrated in FIG. 24, the
designer 62 may launch the Macro Block Definition dialog
142 of FIGS. 15 through 17 in many various ways. For
example, FIG. 27 is a screenshot of the browser 64 illustrating
the designer 62 clicking the Open Macro Block Definition
sub-menu item 174 from the main Tools menu 136 and the
Macro Block sub-menu 138 under the main Tools menu 136.
Another way is to right-click the mouse on a Macro function
block instance. FIG. 28 is a partial screenshot of the browser
64 illustrating the designer 62 right-clicking the mouse on a
Macro function block instance. As illustrated in FIG. 28, the
Open Macro Block Type Definition sub-menu item 218
becomes available. Alternatively, the designer 62 may press
the Modify button 208 of the Macro Block Manager dialog
206 of F1G. 26. Any one of these options brings up the Macro
Block Definition dialog 142 of FIGS. 15 through 17.

Once the Macro Block Definition dialog 142 of FIGS. 15
through 17 is displayed, the designer 62 may modify the name
of a selected Macro function block 76 in the Name field 152
on the General tab 144 illustrated in FIG. 15. When the
designer 62 presses the OK button 156, the name will be
applied to all instances of the selected Macro function block
76, and the Macro function block button 198 on the Macro
Block tab 118 of the Instruction Toolbar 120 will be updated
with the new name. The designer 62 may modify the inputs
and outputs of the selected Macro function block 76 on the
Input/Output tab 146 illustrated in FIG. 16. When the
designer 62 presses the OK button 156, the inputs and outputs
of all of the instances of the Macro function block 76 will be
updated. The designer 62 may enable the security of set a new
password on the Security tab 150. If the designer 62 presses
the OK button 156, the security modification will apply to all
instances of the selected Macro function block 76. The modi-
fication of the logic of the selected Macro function block 76
includes the parameter configuration for each component
function block 66. After modification of the selected Macro
function block 76, the designer 62 may click an Apply menu
option to apply all of the edits. FIG. 29 is a screenshot of the
browser 64 illustrating the designer 62 applying all of the
edits by clicking on an Apply menu item 220.

Use Case: Remove a Macro Function Block Definition

The designer 62 may also use the browser 64 in Editing
mode to remove an active Macro function block 76. Return-
ing to the example illustrated in FIGS. 27 and 28, the designer
62 may choose the Macro Block Manager option with a
Macro function block instance selected by clicking a Macro
Block Manager sub-menu item 238 from the main Tools
menu 136 and the Macro Block sub-menu 138 under the main
Tools menu 136 of the browser 64 (see, e.g., FIG. 20). Doing
so brings up the Macro Block Manager dialog 206 of F1G. 26,
in which the designer 62 may select a Macro function block

US 9,134,720 B2

17
76 and press the Delete button 210 to remove the selected
Macro function block 76. If the deleted Macro function block
76 has been used in the main logic, the designer 62 will be
prompted and must choose to continue to delete the selected
Macro function block 76. If the designer 62 chooses Yes, the
selected Macro function block 76 will disappear from the
instruction list of the Macro Block tab 118 of the Instruction
Toolbar 120. In the main logic, the used instances with the
type of the removed Macro function block 76 will be deleted.

The Macro function block 76 encapsulates the customized
control logic for the particular application, which contains the
Intellectual Property (IP) that designers 62 might not want to
expose to other people. Password protection aims to provide
the capability for the Macro function block designers 62 to
protect their IP. The password is set at the stage of the Macro
function block 76 being designed. Its scope will extend to
each Macro function block instance when it is applied in the
main logic.

Use Case: Set the Password Protection

The designer 62 may also use the browser 64 in Editing
mode to set the password protection of an active Macro func-
tion block 76. Returning to the example illustrated in FIGS.
27 and 28, the designer 62 may open the Macro Block Defi-
nition dialog 142 of FIGS. 15 through 17 in any of the ways
described above. Once the Macro Block Definition dialog
142 has been opened, the designer 62 may select the Security
tab 150. FIG. 30 is the exemplary Macro Block Definition
dialog 142 of FIG. 15 when the Security tab 150 is selected.
By default, password protection is disabled. The designer 62
may select the Password Enabled check box 222 to enable
password protection for the Macro function block 76. Once
the Password Enabled check box 220 is checked, the designer
62 may establish a new password.

Use Case: Operate the Macro Function Block under the Pass-
word Protection

Once password protection has been set up for a particular
Macro function block 76, use of the password-protected
Macro function block 76 will require the designer 62 to verify
the password. For example, FIG. 31 is an exemplary Macro
Block Password dialog 224 that is displayed when the
designer 62 attempts to use a password-protected Macro
function block 76. When the configuration software 50 is
interacting online with the automation device 18, the entered
password will be sent to the automation device 18. If the
automation device 18 passes the password validation, the
configuration software 50 will continue the operation as
described in previous use cases. When the configuration soft-
ware 50 is offline and not interacting online with the automa-
tion device 18, the configuration software 50 takes responsi-
bility for verifying the password. If it passes the validation,
the configuration software 50 will continue the operation as
described in previous use cases.

The configuration software 50 has three distinct operating
modes. The first operating mode is an Online Animation
mode. In this mode, the configuration software 50 continu-
ously communicates with the target automation device 18.
The configuration software 50 will operate in this mode when
the configuration software 50 is in an online state, and when
the configuration matches the configuration present on the
automation device 18. The designer 62 will see the results of
the execution of the logic on the automated device 18 in an
animated fashion. The designer 62 will only be allowed to
make attribute modifications to the logic while in this mode.
However, if the designer 62 chooses to edit the configuration,
the configuration software 50 will exit this mode and enter the
Editing mode, described below. The second operating mode
is an Online Pending Edit mode. In this mode, the configura-

10

15

20

25

30

35

40

45

50

55

60

65

18

tion software 50 can communicate with the automation
device 18. The configuration software 50 will operate in this
mode when the configuration software 50 is in an online state,
and when the configuration does not match the configuration
present on the automation device 18. The third operating
mode is an Editing mode. In this mode, the designer 62 is
allowed to modify the logic, whereas the configuration soft-
ware 50 can not communicate with the automation device 18.
Use Case: Save and Download the Configuration

The designer 62 may use the configuration software 50 to
download the Macro function block definition and its pass-
word protection settings to a particular automation device 18.
When doing so, the configuration of the automation device 18
is saved to a local file, and the configuration of the automation
device 18 is downloaded to the automation device 18. If the
configuration software 50 goes to an offline state, the con-
figuration of the automation device 18 may be saved to the
local file, including the information of the Macro function
block 76 and its password protection settings. When the con-
figuration software 50 is back online, the configuration of the
automation device 18 is downloaded to the automation device
18 at that time, including the information of the Macro func-
tion block 76 and its password protection settings.

Use Case: Upload and Save the Configuration

The designer 62 may also use the configuration software 50
to upload the Macro function block definition and it password
protections settings from a particular automation device 18 if
the automation device 18 has already been configured. When
doing so, the configuration of the automation device 18 is
uploaded from the automation device 18, and saved to a local
file. If the configuration software 50 goes to an offline state,
the configuration of the automation device 18 may be saved to
the local file, including the information of the Macro function
block 76 and its password protection settings. If the configu-
ration software 50 is back online, the configuration of the
automation device 18 is downloaded to the automation device
18, including the information of the Macro function block 76
and its password protection settings. The saved configuration
of'the automation device 18 may then be operated on in either
online or offline mode.

An Exemplary Macro Function Block—Composite Alarm

The configuration software 50 provides an Alarm function
block as basic functional logic. The Alarm function block
receives the input signal from the input port, and based on the
configuration of the parameters: High-High Limit, High
Limit, Low Limit, and Low-Low Limit, to output the alarm
signal via one output port. This single output, with the data
type of WORD, contains the multiple alarms. There are the
least four bits in the output WORD to be defined, in which: Bit
0—LLAlarm, Bit 1—LAlarm, Bit 2—HAlarm, and Bit
3—HHAlarm. Thus, as introduced in the Alarm function
block object definition, the output is to be calculated follow-
ing the operation rules in the table below, in which HHLimit,
HLimit, LLimit, and LLLimit refer to the internal threshold
parameters of the Alarm function block that need to be con-
figured by designers 62. FIG. 32 is a list 226 of typical
conditions and outputs of an exemplary Alarm function
block.

FIG. 33 is a partial screenshot of the browser 64 illustrating
an exemplary Alarm function block 228 being used with a
Mark Equal (MEQ) function block 230. In this application,
when the designer 62 wants to filter the particular Alarm bit
from this output of the Alarm function block 228, the addi-
tional MEQ function block 230 would be applied. For
instance, if the designer 62 only intends to have the HAlarm
signal to be used as one output for hardware (e.g., Digital
Outputl) when the value of Analog Input 1 is evaluated as the

US 9,134,720 B2

19

data source, the logic and parameter settings for the MEQ
function block 230 may be constructed as illustrated. A more
general case may be to separately output all individual alarm
bits from the output of the Alarm function block 228. As
described herein, the Macro function block functionality may
be utilized to design an integrated Macro function block 76 to
implement this functionality. For example, this Macro func-
tion block 76 may be named Composite Alarm. FIG. 34 is an
exemplary embodiment of the logic of a Composite Alarm
macro function block 232. As illustrated, the Composite
Alarm macro function block 232 may include the Alarm
function block 228 and four MEQ function blocks 230, which
correspond to each of the bit outputs (e.g., HHLimit, HLimit,
LLimit, and LLLimit) of the Alarm function block 228. FIG.
35 is an exemplary embodiment of the Composite Alarm
macro function block 232, which may be used in the main
logic with each alarm bit output 234 connected to one digital
output 236. The Composite Alarm macro function block is
merely representative of the way the Macro function block
functionality described herein may be implied, and is not
intended to be limiting.

Nesting Macro function blocks 76 is an important feature.
FIG. 36 illustrates exemplary nesting of multiple Macro func-
tion blocks 76. Export/Import of Macro function blocks 76 is
also animportant feature. FIG. 37 is a partial screenshot of the
browser 64, illustrating how the Export/Import instructions
may be selected by the designer 62.

While only certain features of the invention have been
illustrated and described herein, many modifications and
changes will occur to those skilled in the art. It is, therefore, to
be understood that the appended claims are intended to cover
all such modifications and changes as fall within the true spirit
of the invention.

The invention claimed is:

1. A method for distributed control of a process, compris-
ing:

accessing a macro creation module in a design environ-

ment;
accessing a plurality of function blocks configured to
execute desired arithmetic and/or logical operations
based upon inputs to generate outputs, wherein the
inputs and outputs comprise at least one Boolean input
or output and at least one analog input or output;

creating a macro through manipulation of graphical repre-
sentations of the function blocks displayed via the macro
creation module in the design environment to encapsu-
late multiple function blocks of the plurality of function
blocks into a single set of add-on instructions, wherein at
least one of the inputs and at least one of the outputs of
the multiple function blocks are mapped to inputs and
outputs of the macro;

configuring the macro for a particular automation process;

downloading the macro into a low-level distributed auto-

mation device; and

storing the macro for subsequent use as the single set of

add-on instructions in another design environment to
configure another low-level distributed automation
device.

2. The method of claim 1, wherein the function blocks
comprise non-transitory code configured in an object oriented
programming language.

3. The method of claim 1, wherein the low-level distributed
automation device is an input/output terminal block.

4. The method of claim 1, wherein the low-level distributed
automation device is a push-button block.

5. The method of claim 1, wherein the low-level distributed
automation device is a relay.

20

35

40

45

20

6. The method of claim 1, wherein the low-level distributed
automation device is a motor drive or motor starter.

7. The method of claim 1, wherein configuring the macro
comprises configuring at least one memory register from
which the function blocks read at least one input.

8. The method of claim 1, wherein configuring the macro
comprises configuring at least one memory register to which
the function blocks write at least one output.

9. The method of claim 1, wherein during operation, the
low-level distributed automation device is coupled to an auto-
mation controller via a network, but receives at least one input
and generates at least one output based upon the macro with-
out command from the automation controller.

10. The method of claim 1, wherein the macro is created on
a configuration station in the design environment.

11. The method of claim 1, comprising uploading the
macro from the low-level distributed automation device to a
configuration station.

12. A low-level distributed automation control device,
comprising:

amemory circuit storing a macro comprising a plurality of
function blocks configured to execute desired arithmetic
and/or logical operations based upon inputs to generate
outputs, the macro being configured for a particular
automation process, wherein the inputs and outputs
comprise at least one Boolean input or output and at least
one analog input or output, and wherein the macro is
configured by a macro creation module storing the
macro for subsequent use as a single set of add-on
instructions during subsequent configuration of other
low-level distributed automation control devices;

a processor configured to execute the macro; and

an interface configured to output an output based upon the
macro executed by the processor;

wherein the low-level distributed automation control
device is an input/output terminal block, a push-button
block, a relay, a motor drive, or a motor starter.

13. The device of claim 12, wherein the low-level distrib-
uted automation control device is the input/output terminal
block.

14. The device of claim 12, wherein the low-level distrib-
uted automation control device is the push-button block.

15. The device of claim 12, wherein the low-level distrib-
uted automation control device is the relay.

16. The device of claim 12, wherein the low-level distrib-
uted automation control device is the motor drive or motor
starter.

17. A distributed control system, comprising:

a low-level distributed automation control device compris-
ing a memory circuit storing a macro comprising a plu-
rality of function blocks configured to execute desired
arithmetic and/or logical operations based upon inputs
to generate outputs, the macro being configured for a
particular automation process, a processor configured to
execute the macro, and an interface configured to output
an output based upon the macro executed by the proces-
sor, wherein the inputs and outputs comprise at least one
Boolean input or output and at least one analog input or
output, and wherein the macro is configured by a macro
creation module storing the macro for subsequent use as
a single set of add-on instructions during subsequent
configuration of other low-level distributed automation
control devices; and

an automation controller coupled to the low-level distrib-
uted automation control device via a network;

wherein the low-level distributed automation control
device is configured to communicate with the automa-

US 9,134,720 B2
21

tion controller via the network, but receives the inputs
and outputs the generated outputs without command
from the automation controller, and wherein the low-
level distributed automation control device is an input/
output terminal block, a push-button block, a relay, a 5
motor drive, or a motor starter.

18. The system of claim 17, wherein the low-level distrib-
uted automation control device is the input/output terminal
block.

19. The system of claim 17, wherein the low-level distrib- 10
uted automation control device is the push-button block.

20. The system of claim 17, wherein the low-level distrib-
uted automation control device is the relay.

21. The system of claim 17, wherein the low-level distrib-
uted automation control device is the motor drive or motor 15
starter.

22

